How-To-Learn Python Coding Roadmap - Computer Engineering

Framework: How-To-Learn Python Coding Roadmap - Computer Engineering
by Mavericks-for-Alexander-the-Great(ATG)

The Python learning roadmap depicted in the image outlines a structured path for learning Python programming. It is divided into several key areas that you can follow progressively. Here’s a detailed overview based on the sections from the image:

Package Managers

Basics

Advanced

Data Structures & Algorithms (DSA)

Object-Oriented Programming (OOP)

Web Frameworks

Automation

Testing

Data Science

Tips for Learning Python:

To start learning Python following this roadmap, begin at the basics and gradually progress through each section. Make sure to implement what you learn through small projects or exercises. There are numerous online resources available to help you on this journey, including documentation, tutorials, courses, and community forums.




________




To construct a detailed framework for learning Python based on the roadmap provided, let’s break it down into steps that you can follow sequentially, along with some actionable strategies:

1. Set Up Your Environment

2. Master Python Basics

3. Advance Your Python Skills

4. Understand Data Structures and Algorithms (DSA)

5. Get Practical with Object-Oriented Programming (OOP)

6. Web Development with Python

7. Automate the Boring Stuff

8. Testing Your Code

9. Dive into Data Science

10. Build Real-World Projects

11. Continual Learning and Community Engagement

Resources and Strategies for Learning:

By following this framework and using a mix of resources, you can build a solid foundation in Python and progressively develop expertise in different areas of Python programming. Remember that the key to mastering programming is consistent practice and real-world application of the concepts you learn.




________




Let's tackle a small Python programming exercise (P-Set) for each of the main categories mentioned in the roadmap to illustrate how to code in Python with a focus on machine learning.

1. Basics: Variables and Data Types

Exercise: Create a variable to store the age of a user and print out a customized message.

python

# Variables and Data Types Example


# Store the user's age

age = 25


# Print a message

print(f"You are {age} years old!")


2. Advanced: List Comprehensions

Exercise: Generate a list of squares for even numbers between 1 and 10 using list comprehension.

python

# List Comprehensions Example


# Generate list of squares for even numbers using list comprehension

even_squares = [x*x for x in range(1, 11) if x % 2 == 0]


print(even_squares)


3. Data Structures & Algorithms: Recursion

Exercise: Write a recursive function to calculate the factorial of a number.

python

# Recursion Example


# Recursive function to calculate factorial

def factorial(n):

    if n == 1:

        return 1

    else:

        return n * factorial(n-1)


# Calculate factorial of 5

print(factorial(5))


4. Object-Oriented Programming (OOP): Classes and Methods

Exercise: Define a class Rectangle with methods to calculate the area and perimeter.

python

# OOP Example


# Define the Rectangle class

class Rectangle:

    def __init__(self, width, height):

        self.width = width

        self.height = height

        

    def area(self):

        return self.width * self.height

    

    def perimeter(self):

        return 2 * (self.width + self.height)


# Create a Rectangle object

rect = Rectangle(4, 5)


# Print area and perimeter

print(f"Area: {rect.area()}")

print(f"Perimeter: {rect.perimeter()}")


5. Web Frameworks: Flask

Exercise: Create a simple Flask app that returns "Hello, World!".

python

# Flask Example


# Import the Flask class

from flask import Flask


# Create the application instance

app = Flask(__name__)


# Define a route for the root URL

@app.route("/")

def hello():

    return "Hello, World!"


# Run the application

if __name__ == "__main__":

    app.run()


6. Data Science: Pandas

Exercise: Use Pandas to load a CSV file and calculate the mean of a column.

python

# Pandas Example


# Import pandas

import pandas as pd


# Create a simple DataFrame

data = {'scores': [88, 92, 79, 93, 85]}

df = pd.DataFrame(data)


# Calculate the mean of the scores

mean_score = df['scores'].mean()


print(f"Mean Score: {mean_score}")


7. Machine Learning: Scikit-learn

Exercise: Use scikit-learn to fit a linear regression model.

python

# Scikit-learn Example


# Import required libraries

from sklearn.linear_model import LinearRegression

import numpy as np


# Sample data

X = np.array([[1], [2], [3], [4], [5]])  # Features

y = np.array([1, 2, 3, 4, 5])            # Target variable


# Create a linear regression model instance

model = LinearRegression()


# Fit the model

model.fit(X, y)


# Predict

print(model.predict([[6]]))


Each of these snippets represents a foundational concept or skill in Python programming, particularly in the context of machine learning. Practice exercises like these help in consolidating the theoretical knowledge into practical skills.




________




Let's delve into a second set of programming exercises (P-Set) covering different aspects of Python coding with a slant towards machine learning tasks.

1. Basics: Functions

Exercise: Write a function to convert temperature from Celsius to Fahrenheit.

python

def celsius_to_fahrenheit(celsius):

    return (celsius * 9/5) + 32


# Test the function

temperature_celsius = 30

temperature_fahrenheit = celsius_to_fahrenheit(temperature_celsius)

print(f"{temperature_celsius}°C is {temperature_fahrenheit}°F")


2. Advanced: Decorators

Exercise: Create a decorator that prints the execution time of a function.

python

import time


# Decorator to calculate the duration taken by any function.

def time_decorator(func):

    def wrapper(*args, **kwargs):

        start_time = time.time()

        result = func(*args, **kwargs)

        end_time = time.time()

        print(f"{func.__name__} ran in: {end_time - start_time} sec")

        return result

    return wrapper


@time_decorator

def long_running_function():

    time.sleep(2)

    return "Function has completed execution."


# Run the decorated function

long_running_function()


3. Data Structures & Algorithms: Binary Search Trees

Exercise: Implement a binary search tree with insert and search functionalities.

python

class Node:

    def __init__(self, key):

        self.left = None

        self.right = None

        self.val = key


def insert(root, key):

    if root is None:

        return Node(key)

    else:

        if root.val < key:

            root.right = insert(root.right, key)

        else:

            root.left = insert(root.left, key)

    return root


def search(root, key):

    if root is None or root.val == key:

        return root

    if root.val < key:

        return search(root.right, key)

    return search(root.left, key)


# Create root

r = Node(50)

# Insert nodes

insert(r, 30)

insert(r, 20)

insert(r, 40)

insert(r, 70)

insert(r, 60)

insert(r, 80)


# Search for a node

node = search(r, 60)

if node:

    print(f"Node with value {node.val} found!")

else:

    print("Node not found!")


4. Object-Oriented Programming (OOP): Inheritance

Exercise: Create a class Shape with a method area(). Inherit from it to create Rectangle and Circle classes.

python

class Shape:

    def area(self):

        pass


class Rectangle(Shape):

    def __init__(self, width, height):

        self.width = width

        self.height = height


    def area(self):

        return self.width * self.height


class Circle(Shape):

    def __init__(self, radius):

        self.radius = radius


    def area(self):

        return 3.14 * self.radius * self.radius


# Instantiate the objects

rectangle = Rectangle(4, 5)

circle = Circle(3)


# Print areas

print(f"Rectangle area: {rectangle.area()}")

print(f"Circle area: {circle.area()}")


5. Web Frameworks: Django

Exercise: Create a Django view to display a list of items.

python

# Django Example


# In your Django app's views.py file

from django.http import HttpResponse


def item_list(request):

    items = ["item1", "item2", "item3"]

    return HttpResponse("<br>".join(items))


# Add the path to your urls.py

# path('items/', views.item_list, name='item_list')


6. Data Science: Visualization with Matplotlib

Exercise: Plot a simple line graph showing a trend over time.

python

import matplotlib.pyplot as plt


# Sample data

time = range(1, 6)

sales = [250, 265, 270, 275, 300]


# Plotting

plt.plot(time, sales)

plt.title('Sales Trend Over Time')

plt.xlabel('Time (Years)')

plt.ylabel('Sales')

plt.show()


7. Machine Learning: Clustering with Scikit-learn

Exercise: Perform K-means clustering on a sample dataset.

python

from sklearn.cluster import KMeans

import numpy as np


# Sample data

data = np.array([[1, 2], [1, 4], [1, 0],

                 [10, 2], [10, 4], [10, 0]])


# Create and fit the model

kmeans = KMeans(n_clusters=2, random_state=0).fit(data)


# Predict cluster indexes for data

print(kmeans.predict([[0, 0], [12, 3]]))


# Centers of the clusters

print(kmeans.cluster_centers_)


These exercises cover a broad range of topics from basic to more complex tasks you may encounter while working with Python, particularly in data-focused applications. Each example is intended to be a small illustration of the type of task that can be performed in Python, helping to solidify understanding and proficiency in each area.




________




Let's go through a third problem set (P-Set) tailored to various Python concepts with a leaning towards machine learning applications.

1. Basics: Loops

Exercise: Calculate the sum of all even numbers from 1 to 100.

python

total_sum = 0

for number in range(1, 101):

    if number % 2 == 0:

        total_sum += number


print(f"Sum of even numbers from 1 to 100 is {total_sum}")


2. Advanced: Generators

Exercise: Create a generator function that yields infinite sequential prime numbers.

python

def gen_primes():

    D = {}

    q = 2

    while True:

        if q not in D:

            yield q

            D[q * q] = [q]

        else:

            for p in D[q]:

                D.setdefault(p + q, []).append(p)

            del D[q]

        q += 1


# Create a primes generator

primes = gen_primes()


# Print first 5 prime numbers

for _ in range(5):

    print(next(primes))


3. Data Structures & Algorithms: Sorting Algorithms

Exercise: Implement the quicksort algorithm in Python.

python

def quicksort(arr):

    if len(arr) <= 1:

        return arr

    pivot = arr[len(arr) // 2]

    left = [x for x in arr if x < pivot]

    middle = [x for x in arr if x == pivot]

    right = [x for x in arr if x > pivot]

    return quicksort(left) + middle + quicksort(right)


# Test the quicksort function

array_to_sort = [3, 6, 8, 10, 1, 2, 1]

sorted_array = quicksort(array_to_sort)

print(f"Sorted array: {sorted_array}")


4. Object-Oriented Programming (OOP): Polymorphism

Exercise: Create Python classes that demonstrate polymorphism with a common interface.

python

class Bird:

    def speak(self):

        print("Bird noises")


class Duck(Bird):

    def speak(self):

        print("Quack quack")


class Chicken(Bird):

    def speak(self):

        print("Cluck cluck")


# Polymorphism in action

birds = [Duck(), Chicken()]


for bird in birds:

    bird.speak()


5. Web Frameworks: FastAPI

Exercise: Build a basic FastAPI application that has a GET route to return "Hello, World!".

python

# FastAPI Example


from fastapi import FastAPI


app = FastAPI()


@app.get("/")

async def read_root():

    return {"message": "Hello World"}


# Run the server:

# `uvicorn your_file_name:app --reload`


6. Data Science: Data Manipulation with Pandas

Exercise: Using Pandas, filter out rows from a DataFrame where 'Age' is greater than 30.

python

import pandas as pd


# Create a sample DataFrame

data = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie', 'David'],

                     'Age': [25, 35, 45, 28]})


# Filter the DataFrame

filtered_data = data[data['Age'] > 30]

print(filtered_data)


7. Machine Learning: Feature Scaling with Scikit-learn

Exercise: Use scikit-learn to standardize a feature set using StandardScaler.

python

from sklearn.preprocessing import StandardScaler

import numpy as np


# Sample feature set

features = np.array([[1.0, 2.0], [2.0, 3.0], [4.0, 5.0], [5.0, 6.0]])


# Create a scaler instance and fit it

scaler = StandardScaler()

scaler.fit(features)


# Transform the features

scaled_features = scaler.transform(features)

print(scaled_features)


In this P-Set, each problem targets a different aspect of Python and its applications in machine learning. Through practicing these exercises, you can strengthen your understanding of Python programming concepts and machine learning techniques.




________




Let's tackle a fourth set of exercises (P-Set) that are representative of various Python programming concepts, now with an additional layer of complexity suitable for machine learning enthusiasts.

1. Basics: Conditional Statements

Exercise: Write a function to categorize a person's age group.

python

def categorize_age(age):

    if age < 13:

        return "Child"

    elif age < 20:

        return "Teen"

    elif age < 65:

        return "Adult"

    else:

        return "Senior"


# Test the function

print(categorize_age(34))  # Output: Adult


2. Advanced: Lambda Functions

Exercise: Sort a list of tuples by the second item using a lambda function.

python

pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]

sorted_pairs = sorted(pairs, key=lambda pair: pair[1])


print(sorted_pairs)  # Output: [(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]


3. Data Structures & Algorithms: Hash Tables

Exercise: Create a simple hash table implementation.

python

class HashTable:

    def __init__(self):

        self.MAX = 100

        self.arr = [None for i in range(self.MAX)]

    

    def get_hash(self, key):

        hash = 0

        for char in key:

            hash += ord(char)

        return hash % self.MAX

    

    def __setitem__(self, key, val):

        h = self.get_hash(key)

        self.arr[h] = val

    

    def __getitem__(self, key):

        h = self.get_hash(key)

        return self.arr[h]


ht = HashTable()

ht["march 6"] = 130

print(ht["march 6"])  # Output: 130


4. Object-Oriented Programming (OOP): Encapsulation

Exercise: Design a class with private attributes and provide getters and setters.

python

class Account:

    def __init__(self, name, balance):

        self.__name = name

        self.__balance = balance


    def get_balance(self):

        return self.__balance


    def set_balance(self, balance):

        if balance < 0:

            raise ValueError("Balance cannot be negative")

        self.__balance = balance


# Usage

acc = Account("John", 1500)

print(acc.get_balance())  # 1500

acc.set_balance(2000)

print(acc.get_balance())  # 2000


5. Web Frameworks: Django Models

Exercise: Define a Django model for storing books with title and author.

python

from django.db import models


class Book(models.Model):

    title = models.CharField(max_length=100)

    author = models.CharField(max_length=100)


    def __str__(self):

        return self.title


# Remember to make and apply migrations after defining your model:

# python manage.py makemigrations

# python manage.py migrate


6. Data Science: NumPy for Matrix Operations

Exercise: Use NumPy to multiply two matrices.

python

import numpy as np


# Two matrices

A = np.array([[1, 2], [3, 4]])

B = np.array([[5, 6], [7, 8]])


# Matrix multiplication

C = np.dot(A, B)

print(C)


7. Machine Learning: Train/Test Split with Scikit-learn

Exercise: Split a dataset into a training set and a testing set using scikit-learn.

python

from sklearn.model_selection import train_test_split

from sklearn.datasets import load_iris


# Load dataset

iris = load_iris()

data, labels = iris.data, iris.target


# Split dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2)


print(f"Training set size: {len(X_train)}")

print(f"Testing set size: {len(X_test)}")


These exercises are designed to challenge you a bit more than the previous ones and to deepen your understanding of Python's applications in data science and machine learning. Remember that, especially in machine learning, the real learning happens when you iteratively adjust your approach based on the data and the results you get from your models.




________



Here's a fifth problem set (P-Set) with examples to help you delve deeper into Python programming within the context of machine learning.

1. Basics: Dictionaries

Exercise: Create a dictionary to store phone numbers and write a function to add a new contact.

python

phonebook = {}


def add_contact(name, number):

    phonebook[name] = number


# Test the function

add_contact("Alice", "123-456-7890")

add_contact("Bob", "987-654-3210")


print(phonebook)  # Output: {'Alice': '123-456-7890', 'Bob': '987-654-3210'}


2. Advanced: Closures

Exercise: Use a closure to create a function that remembers the count of how many times it has been run.

python

def run_counter():

    count = 0

    def counter():

        nonlocal count

        count += 1

        return count

    return counter


# Create a new counter function

counter = run_counter()


# Test the closure

print(counter())  # Output: 1

print(counter())  # Output: 2

print(counter())  # Output: 3


3. Data Structures & Algorithms: Graphs

Exercise: Implement a function to perform a depth-first search (DFS) on a graph.

python

graph = {

    'A' : ['B','C'],

    'B' : ['D', 'E'],

    'C' : ['F'],

    'D' : [],

    'E' : ['F'],

    'F' : []

}


visited = set()  # Set to keep track of visited nodes.


def dfs(visited, graph, node):

    if node not in visited:

        print(node)

        visited.add(node)

        for neighbour in graph[node]:

            dfs(visited, graph, neighbour)


# Driver Code

dfs(visited, graph, 'A')  # Output: A B D E F C


4. Object-Oriented Programming (OOP): Abstraction

Exercise: Create an abstract class Shape and subclass it with Rectangle that implements the area method.

python

from abc import ABC, abstractmethod


class Shape(ABC):

    @abstractmethod

    def area(self):

        pass


class Rectangle(Shape):

    def __init__(self, width, height):

        self.width = width

        self.height = height


    def area(self):

        return self.width * self.height


# Usage

rect = Rectangle(5, 3)

print(rect.area())  # Output: 15


5. Web Frameworks: FastAPI with Async

Exercise: Extend the FastAPI example to asynchronously fetch data from an API endpoint.

python

from fastapi import FastAPI

import httpx


app = FastAPI()


@app.get("/async-data")

async def fetch_data():

    async with httpx.AsyncClient() as client:

        response = await client.get('https://jsonplaceholder.typicode.com/todos/1')

        return response.json()


6. Data Science: Pandas GroupBy

Exercise: Use Pandas to group a DataFrame by a column and summarize the data.

python

import pandas as pd


# Create a sample DataFrame

df = pd.DataFrame({

    'Product': ['Apples', 'Oranges', 'Grapes', 'Apples', 'Oranges', 'Grapes'],

    'Sales': [3, 4, 1, 5, 7, 2]

})


# Group by 'Product' and sum the 'Sales'

grouped_df = df.groupby('Product').sum()


print(grouped_df)


7. Machine Learning: Dimensionality Reduction with PCA

Exercise: Apply Principal Component Analysis (PCA) to reduce the dimensionality of a dataset.

python

from sklearn.decomposition import PCA

from sklearn.datasets import load_iris

import pandas as pd


# Load the Iris dataset

iris = load_iris()

data = iris.data


# Initialize PCA to reduce dimensions to 2

pca = PCA(n_components=2)


# Fit and transform the data

transformed_data = pca.fit_transform(data)


# Create a DataFrame with the reduced data

transformed_df = pd.DataFrame(transformed_data, columns=['PC1', 'PC2'])

print(transformed_df.head())


These examples are stepping stones to more complex machine learning projects. Each concept you learn can be seen as a tool in your toolbox, and these exercises help you understand how to wield them effectively.




________



Let's proceed with a sixth set of programming exercises (P-Set) that continue to illustrate the depth and breadth of Python's applications, especially in the context of machine learning.

1. Basics: File I/O

Exercise: Write a function to read a text file and count the occurrence of a particular word.

python

def count_word_occurrence(file_path, word_to_count):

    try:

        with open(file_path, 'r') as file:

            contents = file.read()

            return contents.lower().split().count(word_to_count.lower())

    except FileNotFoundError:

        return "The file does not exist."


# Test the function with a file 'sample.txt'

word_count = count_word_occurrence('sample.txt', 'Python')

print(f"The word 'Python' occurs {word_count} times in the document.")


2. Advanced: Threading

Exercise: Use threading to perform a computationally intensive task in the background.

python

import threading


def background_task(n):

    """ A function that prints squares of numbers """

    for i in range(n):

        print(i*i)


# Run the background task using threading

thread = threading.Thread(target=background_task, args=(10,))

thread.start()


# Continue with other operations

print("The background task is running...")


3. Data Structures & Algorithms: Dynamic Programming

Exercise: Write a function to compute the nth Fibonacci number using dynamic programming.

python

def fibonacci(n, memo={}):

    if n in memo:

        return memo[n]

    if n <= 2:

        return 1

    memo[n] = fibonacci(n-1, memo) + fibonacci(n-2, memo)

    return memo[n]


# Test the function

print(fibonacci(10))  # Output: 55


4. Object-Oriented Programming (OOP): Composition

Exercise: Use composition to create a class that utilizes other classes' functionalities.

python

class Engine:

    def start(self):

        print("Engine is starting.")


class Car:

    def __init__(self):

        self.engine = Engine()

    

    def start(self):

        self.engine.start()

        print("Car is ready to go!")


# Usage

my_car = Car()

my_car.start()  # Output: Engine is starting. Car is ready to go!


5. Web Frameworks: FastAPI Dependency Injection

Exercise: Use dependency injection in FastAPI to reuse a database connection.

python

from fastapi import FastAPI, Depends


app = FastAPI()


def get_db():

    db = "Connected to database"

    try:

        yield db

    finally:

        db = "Disconnected"


@app.get("/items/")

async def read_items(db=Depends(get_db)):

    return {"db_status": db}


6. Data Science: Data Cleaning with Pandas

Exercise: Clean a DataFrame by filling missing values and dropping duplicates.

python

import pandas as pd

import numpy as np


# Sample DataFrame with missing values and duplicates

df = pd.DataFrame({

    'A': [1, np.nan, 3, 4, 3],

    'B': [5, 6, np.nan, 8, 6],

    'C': [9, 10, 11, 12, 10]

})


# Fill missing values with the mean of the column

df.fillna(df.mean(), inplace=True)


# Drop duplicates

df.drop_duplicates(inplace=True)


print(df)


7. Machine Learning: Cross-Validation with Scikit-learn

Exercise: Perform k-fold cross-validation on a dataset using scikit-learn.

python

from sklearn import datasets

from sklearn.model_selection import cross_val_score

from sklearn.ensemble import RandomForestClassifier


# Load the iris dataset

iris = datasets.load_iris()

X, y = iris.data, iris.target


# Initialize the classifier

clf = RandomForestClassifier(n_estimators=10)


# Perform 5-fold cross-validation

scores = cross_val_score(clf, X, y, cv=5)


print("Accuracy scores for each fold:")

print(scores)

print("Average accuracy:", scores.mean())


Each of these problems is crafted to both review and build upon fundamental programming concepts, while also introducing practices that are essential in machine learning workflows.

Please use one example for each as the sixth P-Set to illustrate how to code Python, the machine learning language

ChatGPT

Here's the sixth set of programming exercises (P-Set), tailored to enrich your Python coding skills further, especially in areas relevant to machine learning.

1. Basics: List Operations

Exercise: Create a function that finds the intersection of two lists (common elements in both lists).

python

def intersection(list1, list2):

    return [item for item in list1 if item in list2]


# Test the function

list_a = [1, 2, 3, 4, 5]

list_b = [4, 5, 6, 7, 8]

print(intersection(list_a, list_b))  # Output: [4, 5]


2. Advanced: Context Managers

Exercise: Write a context manager for measuring the execution time of a code block.

python

import time

from contextlib import contextmanager


@contextmanager

def time_block(label):

    start = time.time()

    try:

        yield

    finally:

        end = time.time()

        print(f"{label}: {end - start} seconds")


# Test the context manager

with time_block("Processing Time"):

    sum([i for i in range(1000000)])  # Some processing task


3. Data Structures & Algorithms: Trie Implementation

Exercise: Implement a trie (prefix tree) for storing and searching strings efficiently.

python

class TrieNode:

    def __init__(self):

        self.children = {}

        self.end_of_word = False


class Trie:

    def __init__(self):

        self.root = TrieNode()

    

    def insert(self, word):

        node = self.root

        for char in word:

            if char not in node.children:

                node.children[char] = TrieNode()

            node = node.children[char]

        node.end_of_word = True

    

    def search(self, word):

        node = self.root

        for char in word:

            if char not in node.children:

                return False

            node = node.children[char]

        return node.end_of_word


trie = Trie()

trie.insert("hello")

print(trie.search("hello"))  # Output: True

print(trie.search("world"))  # Output: False


4. Object-Oriented Programming (OOP): Multiple Inheritance

Exercise: Create a class structure with multiple inheritance and method resolution order (MRO).

python

class A:

    def say_hello(self):

        print("Hello from A")


class B(A):

    def say_hello(self):

        print("Hello from B")


class C(A):

    def say_hello(self):

        print("Hello from C")


class D(B, C):

    pass


d = D()

d.say_hello()  # This will print "Hello from B" based on the MRO.


5. Web Frameworks: Django QuerySets

Exercise: Retrieve and filter data using Django ORM.

python

# Assuming you have a Django model `Book`

from myapp.models import Book


def get_books_by_author(author_name):

    return Book.objects.filter(author=author_name)


# Usage example

books_by_orwell = get_books_by_author("George Orwell")

for book in books_by_orwell:

    print(book.title)


6. Data Science: Time Series Analysis with Pandas

Exercise: Perform basic time series analysis on stock data.

python

import pandas as pd


# Assuming `stock_data.csv` has 'Date' and 'Close' columns

data = pd.read_csv('stock_data.csv', parse_dates=['Date'], index_col='Date')


# Resample to get the mean close price per month

monthly_mean = data['Close'].resample('M').mean()


print(monthly_mean)


7. Machine Learning: Support Vector Machines (SVM) with Scikit-learn

Exercise: Train an SVM classifier on a dataset.

python

from sklearn import datasets

from sklearn.svm import SVC

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score


# Load the iris dataset

iris = datasets.load_iris()

X, y = iris.data, iris.target


# Split the data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)


# Initialize the classifier

svm = SVC()


# Train the classifier

svm.fit(X_train, y_train)


# Predict on test set

predictions = svm.predict(X_test)


# Calculate accuracy

print(accuracy_score(y_test, predictions))


These examples represent a broad spectrum of Python's capabilities and showcase how its various features and libraries can be applied in a machine learning context.




________




Consolidating learning, particularly for a programming language like Python, involves active practice, repetition, and application of concepts. Here are some major questions and commands that can help students reinforce their understanding and aid long-term memory retention of the Python language and its ecosystems:

Basics

if condition:

    # do something

else:

    # do something else


Advanced

with open('filename.txt', 'r') as file:

    contents = file.read()


What is the syntax for defining a function in Python?

def my_function(parameters):

    # function body

    return result


Object-Oriented Programming (OOP)

class MyClass:

    def __init__(self, attribute):

        self.attribute = attribute


Data Structures & Algorithms

Web Frameworks

@app.route('/')

def home():

    return "Hello, Flask!"


Data Science

import matplotlib.pyplot as plt

plt.plot(x_values, y_values)

plt.show()


Machine Learning

from sklearn.linear_model import LinearRegression

model = LinearRegression()

model.fit(X_train, y_train)


Automation and Testing

By actively engaging with these questions and Python commands, students will not only recall the syntax but also understand the underlying concepts. Quizzing themselves regularly, coding small projects, participating in coding challenges, and teaching the concepts to others can significantly enhance long-term retention.